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AN ALGORITHM BASED ON THE FFT 
FOR A GENERALIZED CHEBYSHEV INTERPOLATION 

TAKEMITSU HASEGAWA, TATSUO TORII, AND HIROSHI SUGIURA 

ABSTRACT. An algorithm for a generalized Chebyshev interpolation procedure, 
increasing the number of sample points more moderately than doubling, is pre- 
sented. The FFT for a real sequence is incorporated into the algorithm to 
enhance its efficiency. Numerical comparison with other existing algorithms is 
given. 

1. INTRODUCTION 

We extend the iterative algorithms due to Gentleman [12, 13] and Branders 
and Piessens [1] for computing the sequence {PN (t) } of the truncated Cheby- 
shev series 

N 

(1.1) PN(t)=ZakTk(t)a -1 <t< 1, 
k=O 

interpolating a given function f(t) on [-1, 11, where f(t) is assumed to be 
sufficiently smooth. In (1.1), Tk (t) is the Chebyshev polynomial of the first 
kind, and double prime denotes the summation in which the first and the last 
term is halved. 

It is well known that for a well-behaved function f (t) the truncated Cheby- 
shev series (1.1) enables us to construct efficient automatic quadratures for the 
so-called product integral [1, 6, 15, 23, 24, 25] 

(1.2) Q(f, K) = f K(t)f (t) dt, 
-I 

where K(t) is some singular or badly-behaved function. To be specific, the 
approximation (1.1) yields an integration rule QN(f, K) to Q(f, K), 

N 

(1.3) QN(f, K) = E Z akQ(Tk, K), 
k=O 

where the modified moment Q(Tk, K) can be computed for various useful sin- 
gular functions K(t) by means of recurrence relations [ 19, 20, 21]. If K(t) = 1, 
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QN(fI 1) reduces to the Clenshaw-Curtis method [5] (henceforth abbreviated 
to CC method). 

Gentleman [12, 13] proposed the use of the Fast Fourier Transform (FFT) 
to efficiently compute the Chebyshev coefficients a N in (1.1) and incorporated 
it into a program of automatic quadrature by the CC method, where in general, 
by doubling N, the computation can be repeated, using previously computed 
results until an error criterion is satisfied. In the Gentleman scheme, however, 
N is chosen as N = 2 x 3n, n = 1, 2, ... rather than N = 2n ,because the 
program is simpler. In either case, tripling or doubling [1] of N increases the 
number of function evaluations quickly [22] and is rather expensive when the 
number of abscissae required is high. 

Bulirsch [4] made use of the sequence N = 3 x 2n as well as 2', n = 
1, 2, . .. , in the Romberg integration scheme to enhance the efficiency or econ- 
omy of automatic quadrature [10]. In this paper we increase N more moder- 
ately as follows: 

(1.4) N2= 3, 4, 5, .3 x 2 I n 

The aim of this paper is to present an algorithm for recursively generating 
a sequence of pN(t) (1.1) by increasing N as in (1.4) and by using the FFT. 

We choose abscissae {tN} for interpolating f(t) so that in particular for the 
integral Q(f, 1) with K(t) = 1, the sequence {pN(t)} yields a sequence of 
interpolatory quadrature rules QN(f 1) = fI1 pN(t) dt = XwNf(t$) having 

positive weights w1 . This is important to guarantee the numerical stability 
and convergence of quadrature rules [9, p. 189]. 

To this end, we make a slight modification in the sequence of abscissae 
{cos 2 7aj } proposed in [14] to interpolate f(t) on the open interval (-1, 1) . 
We define a sequence fl ( = -1, 0, 1, ... ) such that flI = 0, ,1% = 1/2 
and /? (j > 1) satisfies the same recurrence relation as that for a1 given in 
[14, equation (1.1)] except for the starting value fi1 = 3/4 instead of 1/4. Then 
the abscissae t are given by 

t1= cos27lrf, jf= -1,I O.,I 2 . 

Note that all the properties concerning the sequence a1 in [14] also hold for 

the sequence f J (j > 1) and .,? - a1 = 2Ym for an m-bit integer 1. 
The approximation pN(t) (1.1) is an interpolating polynomial of degree N 

satisfying 

(1.5) pN(tJ) = f(tj), j = -1,0, 1, ... , N- 1. 

Let N = 2 , n = 2, 3, ...; then, as shown in [14], the set of the first N + 1 
abscissae t, I = -1, 0, ..., N - 1, coincides with {cos 7nj/N} (O < j < N) 
used in the CC method, so that we have [5] 

(1.6) ak =N Ef(cos 7rj/N) cos 7rkj/N, 0 < k < N. 
J=O 
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The interpolating polynomials p5N/4(t) and p3N/2(t) of degrees 5N/4 and 
3N/2 have the form 

N/4 

(1.7) P5N/4(t) = PN(t) + Zk {TN k(t)- TN+k(t)}, 
k=1 

N/2 

( 1 .8 ) P3N/2(t) = PN(t) + Bk {TN-k (t) -TN+k (t) }. 
k=1 

In ?2 we will prove the following theorem. 

Theorem 1.1. Let N = 2n, n = 2, 3,..., and define 5k and Yk by 

(9N/4-1 

(1.9) Edjk= Z f(cos~j)e J, 0 < k < N/4, 
J=0 

2 N/2-1 
-ikqj (1.1 0) Yk 

=k- Z f(cosC )e , < k < N/2, 
J=O 

where Xy and q are defined by 

(1.1 1) J = 87r(j + f4)/N, qj= 47(i + f2)/N. 

Then we have 

bN/4k = 2 cosirfl cos 7f2{2 L~k-ak -cos (32(aN/4 k + aN/4?k)f 

(1.12) - (aN + aN CSl72(aN/2>k + N/2?k 

- (a3N/4k + a3N/4?k)/2, 0 ? k < N/4, 

_k= cos 7fll (2k- a N) 
(1.13) BN/2-k = W0312yk- k) 

- (aZ/2k + aN/2?k)/2, 0 < k < N/2, 

where, when k = 0, the right-hand sides of (1.12) and (1. 13) are to be halved. 

In ?3 the FFT technique for real data [2, 26] is shown to be helpful in suc- 
cessively evaluating the discrete Fourier coefficients {5k } of length N/4 (1.9), 
followed by {Yk} of length N/2 (1.10), and followed by {akN} (I1.1) of length 
2N + 1 . Section 4 discusses error estimates for the interpolation polynomials 
pN(t), p5N/4(t) and p3NI/2(t) , respectively. An application to automatic quadra- 
ture, and numerical results, are given in ?5. 

2. PROOF OF THEOREM 1.1 

We first prove (1.12). Setting t = cosO in (1.1) and (1.7), we have from 
(1.7) 

N N/4 

(2.1) PSN/4(cos 0) = E ak cos kO + 2 sin NO E b' sin kO. 
k=o k=l 
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It can be easily seen from (2.4) in [14] that 

5N/4-1 N/4 

JJ (t-t1) = 2N/4 (TN/4(t)-cos2 rfl4) = 1I(t-COS y) 
j=N j=1 

for the integer N = 2n (n = 2, 3,...), where Xj is defined by (1.11). Thus, 

the coefficients bN in (2.1) are determined from the condition 

(2.2) P5N/4 (COS J) =f(cosJ), 0 < j < N/4. 

Let the formal sine expansion of the right-hand side of (2.2) be 

N/4 

(2.3) f(cos 1) = Z"dk sin k~j, 
k=O 

where dk is given [14, equation (3.15)] by 

(2.4) dk = 295N/4-k/ sin27f4,1 0 < k < N/4, 

d0 = 0. 

Then from (2.1), (2.2) and (2.3) it follows that 

N/4 N N/4 

(2.5) d "c sin = a cos + 2 sin 27rfl1 E bk sin k 
k=O k=O k=i1 

Making use of the relations cos(N - k)4j = - sin k4j and 

cos k4j = cos 27rf4 sin k~j + sin(N/4 - k)4y/ sin 27rf4, 

cos(N/2 ? k)4j = cos 22 72 cos k+ sin 2 7rf2 sin k4j, 

and using the orthogonality of the sine functions in (2.5) and (2.4), proves 
(1.12). We can prove (1.13) similarly, in fact more easily, but we omit the 
details. 

3. FFT WITH SYMMETRIES 

A thorough presentation of the FFT exploiting various symmetry relations is 
given in Swarztrauber [26]. Here we reformulate some of the algorithms to make 
them suitable for our applications. It is convenient to introduce a general offset 
trapezoidal rule [7, 16] (or generalized midpoint rule) MAN(X) for a periodic 

function X(t) with period 27r. Define XN1, with a shift parameter a as 
follows: 

(3. 1) X N+ X(27r(j + ce)IN), O < a <1. 

Then M (X), an approximation to fo X(t) dt, is given by 

N-1 

(3.2) M X) = E X 
J=O 
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The special cases a = 0 and 1/2 of (3.2) coincide with the trapezoidal rule and 
the midpoint rule, respectively. 

Periodicity in X(t) gives rise to periodicity in MN(X) with respect to Ca, 

(3.3) M,>+1 (X) = Mo(X). 

The general offset trapezoidal rule M~,j(X) with 2N abscissae is easily ex- 
pressible in terms of MN(X) and MN12(X), both having N abscissae, 

(3.4) M2a (X) = {M (X) + M +1/2 

This relation will play an important role in the FFT algorithms to be developed. 

Definition 3.1. For a periodic function X(t) with period 27c, the generalized 
discrete Fourier transform AN( with a shift parameter a is defined by 

AN 1 N -1kt t) Ak . ( 7t 
2z , (e Xt 

(3.5) 1 N-1 

N Z X + exp{-27ik(j + a)/N}, k = 0 ,+ l+2, 
J=0 

where N is defined by (3.1). 

Lemma 3.2. Let X(t) be a periodic complex function with period 2ir, that is, 
XN N. Then we have N~+J+a ]~+(X' 

(3.6) A N e-2UiaA N N+k,( = Ak(, 

(3.7) AkN =AkN. 

Proof. The proof follows trivially from the definition (3.5). E 

The relation (3.4) gives a splitting algorithm for A N2(N (3.5): 

(3.8) Ak 2( = (Ah 
N 

+ Ah N+u)/2, 0 < k < N 

A2N N N27a (3.9) AN+2.x = (A - Ak . )ee /2, 0 < k < N. 

If N is a power of 2, N = 2n , the iteration of this splitting algorithm constitutes 
a modified version of the FFT of Gentleman-Sande type [3, p. 155; 1 1] for a 
complex function X(t). 

N Lemma 3.3. Let X(t) be a real-valued function with period 27r, that is, X] , = 
-N 
XN+,. Then we have 

(3.10) AN e27riaN 

where X denotes the complex conjugate of X. 

Proof. The proof is a trivial consequence of the definition (3.5) for Ak N 0 
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Corollary. Let a = 0, 1/2, 1/4 or 3/4; then we have (A) ANkO =AUN 0, (B) 

A N iN N qNA'j11A N -qN 
N-k, 1/2 = k, 1/2, (C) AN-k, 1/4 = -1 k 1/4 or (D) AN-k 3/4 = IAk,3/41 

respectively. 

Equation (3. 10) indicates that it suffices to compute half of the N transforms 
N 

Ak, , Consequently, the amount of computation and storage can be halved in 
comparison with that for complex X(t). The splitting algorithm incorporating 
this saving consists of (3.8) with 0 < k < N/2 and 

(3.11) AN2N = (AkN -Ak 
N 

/2)e /2, 0 < k < N/2. 

Here we conveniently restrict the fraction a in (3.5) to any element of the 
sequence {3X1 } , say, /3q for arbitrary positive integer q, to formulate the FFT 

of the real-valued data XjN = X(27(j + a)/N) (O < j < N) in a form suitable 
for our applications. Then it can be seen from (2.3) in [14] that (3.5) may be 
rewritten as 

N N-I 

(3.12) AkIs = - E X(2nf/qN+j) exp(-2nikflqN+j), 0 < k < N 

for which an FFT algorithm is given in the following theorem. 

Theorem 3.4 (FFT for a real sequence). Let N= 2n, n = 1, 2, . and X(t) 
be a real-valuedfunction. Calculate YI(k) for 1= 1, 2, ..., n by thefollowing 
recurrence relations with the starting values Y (j) = X(27r/3qN+J). 0 < j < N: 

1 I(k + j21) = Y' t(k + j2/) + Y '(k + 21 
1 

+ j2/1) 
(3.13) 

0~~~~~~~~ < k < 2 
-2 

YI(-k + 2 1 + j2)={Y (k + j2') - YV l (k + 2' 1 + j2')} 

(3.14) x exp(-7ifq2n- +J ) 
/-2 n-I 

0< k < 22 O<j < 2 

Then we have for Ak A in (3.12) 

(3.15) Ak jf=Y (k)/N, 0 < k < N 

where we make use of the relation (3.10) to obtain Y'(N- k) for 0 < k < N/2 

by 

(3.16) Yn (N- k) = yn (k) exp(-27rid/q). 

Remark. If we set L = 21, M = N/L and F = /3qM?jLI we see that 

Y' (k + jL) corresponds to A L 

In implementing the above FFT on a computer, N + 1 real-valued stor- 
ages V(k), k = 0, 1, ... , N, are sufficient to carry out the recursions (3.13) 

and (3.14) in place. Specifically, WYI(k + j2'), 0 < k < 2' l, are stored 
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in V(k + j2 ) and QY'(k + j2),0 < k < 2 'in V(2 k + j2'), while 

Y' (21-1 +j2I) exp(7Ji/q.2n-_+j), which is real-valued, is stored in V(2'1 + 2) . 
In the final step, / = n of (3.13) and (3.14), the contents of V(k) are as follows: 

WY n(k) = V (k) , O < k < 2n1 

WYn(2n-1) = V(2n )cOs lr3q, 

Wyf (2n - k) = V(k) cos 27tq - V(2n - k) sin 27r/q, 

(3.17) 
SY n (k) = V(2 n k), O k 2n-1, 

Q3Yn(2n-l) = -V(2nl ) sinlr/3q, 

QYn(2n -k) = -V(k) sin 27f- V(2 n-k) cos 2l/q, 

O < k < 2n. 
Note that no unscrambling is necessary for the result of the FFT (3.15) because 
the input sequence Y0 (j) = X(27r/3qNfi) has been generated in the bit-reversed 
order. 

Lemma 3.5. Let X(t) be a real and even function, that is, X1N = XNNa* 
Then 

(3.18) AkN =Ak. 
Proof. From (3.5) and the assumption of the lemma, we have 

N-1 

A - = N E XjN exp{-27rik(j + 1 - c)/N} 
J=O 

N-1 

N Z XN-J-( exp{-27rik(N - j - a)/N} 
J=O 
N-1 

N Z X+( exp{27i(j + a)/N}-Ak * 
J=O 

Corollary. Both AkON and A N are real-valued and are given by k'0 ~k, i/2 

2N I 
N 

2N 7rkj (3.19) Ak?=N X cos N O< k < N 

(3.20) kO N-E i N22o~i , OkN 
J=O 

(3.20) A 12=N , +l2 cos N (j+ 2) 0 < k < N. 

When f(cost) is taken as X(t) in (3.19), comparison of (1.6) with (3.19) 
N gives the well-known relation [13] for the Chebyshev coefficients ak 

(3.21) ak = 2Ak O ' < k < N. 
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Equations (3.8) and (3.11) yield a well-known splitting algorithm for ak (= 

2A 2N 
2k, o) 

(3.22) A NO = (A 
N 

+ AN 12)/2 0 < k < N/2, 

(3.23) A2N-k , = AAk,0 - rk i/2)/, 0 < k < NV/2, 

where AN!21!2 = 0 from (3.10) and (3.18). Swarztrauber [26] referred to 

a real sequence XN = XNJ as being R symmetric, to a real even sequence 
N N N N = XNj as being E (even) symmetric, and to a sequence X = XN_ - as 

being QE symmetric (quarter-wave even symmetric). If we use this terminology 
and in (3.20) take into account the fact that _ N is QE symmetric, Z j_+1/2 i Esmerc 
Z2N-J-1 = ZJ, equations (3.22) and (3.23) imply that an E symmetric sequence 
splits into E and QE symmetric sequences both of half the length. 

Further, it can be shown from (3.8) and (3.18) that the transform Ak 1/2' 

a QE symmetric sequence in (3.22) and (3.23), agrees with the real part of the 
transform AkN1k2/4 (= k3/4), an R symmetric sequence, that is, 

(3.24) AN -= AN12 N1J2AN/4 0 < k < N/2. k, 1/2 k, 3/4 =Rk, 1/4' 

As will be seen, the transform AkN1214 relies on the abscissae cos 2ira (1 < j < 

N/2) given in [14], while A N!2 relies on cos2ir/j (1 < j < N/2). It will be 
k, 3/4 

shown elsewhere that positive quadrature rules [9, p. 189] of closed type can be 
constructed based on the abscissae cos 2rflUJ, whereas the abscissae cos 27aJ 
(1 < j < N - 1) yield positive quadrature rules of open type and degree N - 2, 
with N given by (1.4). This fact makes the transform {AN124} preferable to 

the alternative {A N12 

Lemma 3.6. Take f (cos t) as a real periodic function X(t) in (3.5) and let 5k 

and Yk be defined by (1.9) and (1.10), respectively. Then 

(3.25) k = A N14 AN N4 0 < k < N14 k k, 3/16 k,/34' k N4 

(3.26) Yk = Ak /3/8 = Ak,/3 0 < k < N/2. 

Proof. The proof follows trivially from the definitions of Jk and Yk . 

Figure 1 illustrates how the transform Alk6 with E symmetry, which corre- 

sponds to the Chebyshev coefficient ak, successively splits into the transforms 
of smaller length with their own symmetries, until it reaches the original func- 
tion values Al f= (cos 27fl ), j = -1, 0, ,7. 

Let N = 2n (n = 3, 4, ...) and suppose that the Chebyshev coefficients 
{ak}, 0 < k < N, of the interpolating polynomial pN(t) (1.1) are given. We 
now show the process of successively getting P5N/4(t) (1.7), then P3N2 (t) (1.8), 
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A I 

ak/2=Ak~ 
1 = 2 QE 

RE A 
ak/2~~~~~~~~~~~~~~~~0 = /2 A 

E ~~~~ak 2/2 4k QE34 
QE A Ai I/ 

R 

Splittingprocedurefor the Fr t rans 

Akoaraeefutofc 3) The 

| 0A121 34f 3, )gewtteiudaf2k 1/2 , 14 3/4 ) 

~~~~~~QE R Ao I/1 

j=-1,0,. 77. 7 

R 

then the polynomial p2N(t) of double the order 2N, until a stopping criterion 
is satisfied. 

Step 1. Construction of psN/4(t) . Compute 5k (= Ak'1#) defined by ( 1.9) by 
using the FET for a real sequence described in Theorem 3.4 and check a stopping 
criterion based on an error bound which may be estimated by computing the 
last two or three coefficients bN-2, bN-l and bNN in (1.12) as described in 
?4 below. If the stopping criterion is satisfied, exit from this step to stop the 
process after computing the remaining {b7N} (1 ? k ? N - 3) given by (1.12). 
Otherwise, proceed to Step 2 without computing {b7}. 

Step 2. Construction of p3N/2(t) . Compute AkN!416 0 K k < N/4, by using 

k, 11/160,1/1 

the FFT for a real sequence (Theorem 3.4), and combine ak obtained in Step 
1 with AkNI'141/16 by the algorithm of ( 3. 8) and ( 3. 1 1) to calculate Ok ( = AkNI A), 
0 K k < N/2k. Similarly as in Step 1, check a stopping criterion. If the criterion 
is satisfied, compute {B7 } given by (1.13) and exit from this step to stop the 
process. Otherwise, go to Step 3. 
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Step 3. Construction of p2N(t). Use the FFT for a real sequence to compute 

{A N172 1 which is combined with {Yk} obtained in Step 2 to yield {AkN 3/4} 
by the algorithm of (3.8) and (3.1 1). Finally, use (3.22) and (3.23) to compute 

ak (= 2Ako) from and 1/2= k 3/4) obtained previously. 
It should be noted that the steps in 1, 2 and 3 for computing Sky Ik and 

akN can be regarded as parts constituting the algorithm of the FFT of larger 
length. Consequently, when p5N/4(t) or p3N/2(t) is the polynomial satisfying 
a stopping criterion, its Chebyshev coefficients can be evaluated with the same 
amount of computation as required for the FFT, namely O(N log2 N) . 

Lemma 3.7. Let X(t) be a real and odd function with period 27r, that is, 
N N N 

XNJJ_, = -X~,, and Ak,(a be defined by (3.5). Then 

N -N 
(3.27) Ak 1-_ = -Aka. 

Proof. Equation (3.27) is easily established along the lines of the proof of 
Lemma 3.5. u 

Corollary. Both A N0 and A N112 are strictly imaginary and are given by 

2N 
. N-1 

2N 7rkj (3.28) Ako = - E X sin - ? < k < N 
N ~N 0kN 
J=O 

(3.29) Ak 1/2 = N- sin k j + k )N. 

J=O 

The splitting algorithm for AkN0 is the same as (3.22) and (3.23) except 
N N N for A0,1/2 = 0. Swarztrauber [26] referred to real sequences X = -XNJ 

and XN =-XNJl as being 0 (odd) symmetric and QO (quarter-wave odd) 

symmetric, respectively. Noting that Z1- xj+ 2 in (3.29) is QO symmet- 
ric, Z2N-Jl = -ZJ, we can see from (3.22) and (3.23) that an 0 symmetric 
sequence splits into 0 and QO symmetric sequences both of half the length. Fur- 
ther, from (3.8) and (3.27), the transform AkN112, a QO symmetric sequence, 
can be shown to agree in magnitude with the imaginary part of the transform 

N 
Ak 1/4 (= -A. 3X4), an R symmetric sequence, as follows: 

(3.30) Ak /2= iAk /4= Ak 3/4, 0 < k < N. 

4. ERROR ESTIMATES 

We now derive estimates for the differences between f(t) and the approx- 
imate polynomials PN(t), p5N/4(t) and P3N/2(t) defined by (1.1), (1.7) and 
(1.8), respectively. 
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Substituting the function f (t), expanded in terms of the Chebyshev polyno- 
mials, 

00 

(4.1) f(t) = Z akTk(t), 
k=O 

into (1.6) establishes the (aliasing) formula [8] 

00 

(4.2) aN =ak + (a2mNk + a2mNk) 0 < k < N. 

In (4.1) the prime denotes the summation whose first term is halved. From 
(1.1), (4.1) and (4.2) it follows [8] that 

00 

(4.3) max 1PN(t)- f(t) I< 2 E Jakj. 
- -t~ k=N+lI 

Lemma 4.1. Let N be a power of 2, N = 2n, and ek be defined by (1.9). Then 

00 

(4.4) 2~k = ak + Z(amN/4+k + atnN/4-k) COS 7m/2 , 0< k < N/4. 
m=1 

Proof. Verification of (4.4) consists of inserting (4.1) into (1.9) and using the 
orthogonality of the cosine function. o 

We have from (1.7), (4.1) and (4.2) 

N/4 

PSN/4(t) f (t) PN(t) f(t) + bk {TN-k(t)- TN+k(t)} 
k=1 

N/4-1 00 

- Z ' (a2fnN+k + a2mN-k )Tk (t) 

k=0 mi= 
N/4 0o0 

(4.5) + E ~b + Z 
(a2,lNk+ aT~kt 

(45)+bk + ,aN+N-k + a2flN-N+k)} N-k( ) 
k=l mn=lI 

00 N/4 

+ 
Z 

a(91?+ I)N TN(t)-(aN+k + bk )TN+k (t) 
in= I k=l 

- IE akTk(t) 
k=N+N/4+ 1 

Let G (j,k) be defined by 

(4.6) GZ(j, k) = a2,inN+jN/4+k + a2mN+jN/4-k 
+ a2,n N- jN/4L + a2t1N- JN4 k- 
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Then 2R3k in (4.4) can be rewritten as follows: 
3 

2WJk = ak + L(ajN/4+k + ajN/4- k) cos jij2 

(4.7) 3= ( * ) ~00 3 

+ E(-l)nE Gm(j, k)cosj7 2, 0 < k < N/4. 
n=l I J=O 

We find from (1.12), (4.2) and (4.7) that 
00 

max pN { G/t) - (?, k) cos 7fl, c aJj 
m=l 

(4.8) ~~~~+ G 1~(l, k)( + cos 7rl, 

(4.9) 00 m _N42 

+ G2in _1(2, k) COS 7 2 + 2m-3k} 

0 < k < N/4. 

Substituting (4.8) into the rightmost side of (4.5) we find 
00 

max IP5NI4(t) - (t) < 2(2+ Icosrfl21) E lakl -I~~~~~t~~~~l 
~~k=SN/4+ 1 

(4.9) 00 
- 4.77 E lakl, 

k=SN/4+ 1 

where ,82 =3/8. In a similar way we find for P3Nf12(t) 

oo 

max IP3NI2 (t) f (t) I < 4(1 + Icos 7r91 ) E lak I -I~~~~~t~~~~l 
~~k=3N/2+ 1 

(4.10) 00 

=2(2 + V2) E lakl. 
k=3N/2+ 1 

It can be observed from (4.3), (4.9) and (4.10) that the numerical factors in 
the error estimates for the approximate polynomials p5N/4(t) and p3N/2(t) are 
three to four times as large as the one for pN(t) based on the sample points 
cosi7j/N, j = 0, 1, ... , N, used in the CC method. The coefficients lakI in 
(4.3), (4.9) and (4.10) may be estimated by observing the asymptotic behaviors 
of la7 |, |BNI and IbN |[8, 14, 17]. 

5. AUTOMATIC QUADRATURE AND NUMERICAL RESULTS 

This section compares the numerical performance of an automatic quadra- 
ture routine based on our results with the performance of GCCINT [1] and 
CCQUAD [13] for the definite integral Q(f, 1) =II f (x) dx. 

5.1. Stopping criterion. O'Hara and Smith [1 7], and subsequently Oliver [1 8], 
give a practical method for the error estimation in the CC rule. We incorporate 
the method due to Oliver with minor simplifications and extensions. 
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For N= 2n (n = 2, 3, ....) Oliver sets 

(5.1) K = max(IaZ/2aZ 21 X l 2/a> 4I 
N 

a4/aN>6D. 

If K < KN(16), where KN(a) is tabulated in [18] for a = 2, 4, 8, 16 and 
N = 2 n (n = 2, 3, ..., 7), then an error estimate EN for the approximation 

QN(fI 1) is given by 

(5.2) F - l6aN la AlIK 3 
N (N2 1)(N2 9) N-4 

where a is the smallest of the numbers 2, 4, 8, 16 such that K < KN(a). 

In (5.1) we note that K is an estimate of the rate of convergence of the 
Chebyshev coefficient ak in (4.1). On the other hand, the aliasing formula 
(4.2) indicates that a (0 < i < N) is a better approximation to aNl for 

larger values of i except for aN . Therefore, we replace the second and third 
terms in the right-hand side of (5.1) by a single term Ia 6/aNl1a for N > 8. 
Further, for simplicity, we neglect the cases a = 2 and 8 in (5.2). 

If KN(16) < K, the Chebyshev series (1.1) converges slowly. We set eN = 

IQN(fI 1) - QN/2(f 1)l and take EN - eNKN/2 as an error estimate for 
QN(fI 1) if KN(16) < K < 0.9, where the choice of the constant 0.9 has 
been empirically determined. For K > 0.9, we take EN = eN. 

For the error estimates E5N/4 and E3N/2 of the approximate integrals 

Q5NI4(f I 1) and Q3NI2(f X 1), respectively, we set 

(5.3) EN/4= 2 l6aN IbN lK, 

(5.4) E3N/2 = 2_)N IBN14 IK, 
(N2 - l)(N2 9) 

if K < KN(a) . We take E5N/4 = E NKN/S and E3NI2 
= EN KN/4 if KN(16) < 

K < 0.9. For K > 0.9, we set KN = eNleN!2 and take' EN/4 = eNKN/ and 

E3N/2 =eNKN . Finally, we use E5NI4 and E3N/2 multiplied by 2 + I COS 7021 

and 2 + v'2, respectively, to take into account the differences between the ap- 
proximations P5N/4(t) and P3N/2(t) and f(t) as shown in (4.9) and (4.10). 

5.2. Numerical results. We give numerical results for the integral f! (x) dx, 
where 

(1) f(X) (X2 +a2)- a= 1, 1/8, 

(2) f(x) = (I -a2)/(l - 2ax + a2), a = 1/2, 7/8, 

(3) f(X) = (I +X)a/2 a--3, 1. 

Figures 2 and 3 illustrate the number N of functional evaluations required 
to satisfy the requested tolerance ca. Table 1 compares the execution time, the 
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(X2+ 2 X1 IXA(S( x2d ai dx -~ J(1-.2V'(1-2ax+ca2)dx 

al=1/8 / a=7/8i/ 

z /7- /- 1r =1/2/ / 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I / 
0)~~~~~~~~~~~~1 

3 
-2 -5 -10 -2 -5 -10 

log910Ea l 19tEa 

FIGURE 2 

Comparison of the number N of functional evaluations required to satisfy the requested tolerance 
1a for f 

II(X2 + a2) I dx and fI(I - a2)/(1 - 2ax + a2)dx . Solid curves, equally and 

unequally dashed curves represent results based on the present method, the method of Branders and 

Piessens [1], and the method of Gentleman [13], respectively. 

1 [(1+X?)'X / 
10 _/ 

z / 
0 

6 - 1/ 

21 
-1 -5 -10 

FIGURE 3 

Comparison of the number N of functional evaluations for I (1 + x)a/2 dx. 

actual error, as well as the N required for the tolerance ca for the problem (2) 
with a= 3/4. 
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Table 1 suggests that all schemes examined perform the computations in 
execution times proportional to the number of abscissae used. Specifically, 
CCQUAD and GCCINT take almost the same execution time per sample point, 
while the present method takes approximately two thirds of that. 

TABLE 1 
Comparison of the performance of the present method with GCCINT due to Branders and 
Piessens [ 1 ] and CCQUAD due to Gentleman [ 13] for 1(1 -a2)/( I -2ax~a2) dx, a 3/4. The 

.~ ~~~~~~~~~~~_(- - 

.a 
+a)da=34 h 

time is given in msec. 

present method Branders Gentleman 
e N time error N time error N time error 

10- 17 10 3 x 10-' 13 8 1 x 10-3 19 14 1 x 10-4 
10-4 33 18 4 x 10-7 49 36 9 x 10-'0 163 140 4 x 10-16 
10-6 41 24 9 x 10-8 97 78 1 x 10 l 5163 140 4 x 101l6 
10- 65 36 4 x 10- 97 78 1 x 10- 163 140 4 x 106 
10 65 36 4 x 10-12 193 160 4 x 10-16 487 458 2 x 10-'6 
1 -02 81 48 8 x 10-14 193 160 4 x 10- 6487 458 2 x 101'6 

The positivity of the weights w N of the quadrature rules QN (f, 1) depend- 
ing on the abscissae t will be proved elsewhere. The FORTRAN program 
implementing the present scheme will also appear elsewhere. 

The computation was carried out in double-precision arithmetic (about 16 
significant digits) on the MELCOM COSMO 700-II computer at Fukui Univer- 
sity. 
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